3,718 research outputs found

    Providing the Third Dimension: High-resolution Multibeam Sonar as a Tool for Archaeological Investigations - An Example from the D-day Beaches of Normandy

    Get PDF
    In general, marine archaeological investigations begin in the archives, using historic maps, coast surveys, and other materials, to define submerged areas suspected to contain potentially significant historical sites. Following this research phase, a typical archaeological survey uses sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. A clear demonstration of the applicability of highresolution multibeam sonar to wreck and artifact investigations occurred this summer when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller targets such as tanks and trucks. Of particular interest were the well-preserved caissons and blockships of the artificial Mulberry Harbor deployed off Omaha Beach. The near-field beam-forming capability of the Reson 8125 combined with 3-D visualization techniques provided an unprecedented level of detail including the ability to recognize individual components of the wrecks (ramps, gun turrets, hatches, etc.), the state of preservation of the wrecks, and the impact of the wrecks on the surrounding seafloor

    Unsaturated fatty acids suppress interleukin-2 production and transferrin receptor expression by concanavalin A-stimulated rat Iymphocytes

    Get PDF
    The proliferation of T-lymphocytes is dependent upon their ability to synthesize and secrete the cytokine, interleukin-2, and to express cell surface receptors for interleukin-2 and transferrin. We have previously reported that certain fatty acids inhibit mitogen-stimulated T-lymphocyte proliferation. We now report that unsaturated fatty acids decrease the concentration of interleukin-2 in the culture medium of such cells by up to 45%. This suggests that unsaturated fatty acids inhibit lymphocyte proliferation by suppressing interleukin-2 production. However, lymphocyte proliferation was only partially restored by addition of exogenous interleukin-2 to cell culture medium in the presence of unsaturated fatty acids, indicating that these fatty acids also affect other processes involved in the control of proliferation. Saturated fatty acids, which also inhibit lymphocyte proliferation, did not affect the interleukin-2 concentration in the culture medium suggesting a different mechanism for their action. Neither saturated nor unsaturated fatty acids affected the expression of the interleukin-2 receptor by mitogenstimulated lymphocytes. In contrast, unsaturated fatty acids decreased expression of the transferrin receptor by up to 50%. These observations suggest that the mechanism by which unsaturated fatty acids inhibit lymphocyte proliferation involves suppression of interleukin-2 production and of transferrin receptor expression. The mechanism for the inhibitory action of saturated fatty acids is not clear

    On the Use of Historical Bathymetric Data to Determine Changes in Bathymetry: An Analysis of Errors and Application to Great Bay Estuary, NH

    Get PDF
    The depth measurements that are incorporated into bathymetric charts have associated errors with magnitudes depending on the survey circumstances and applied techniques. For this reason, combining and comparing depth measurements collected over many years with different techniques and standards is a difficult task which must be done with great caution. In this study we have developed an approach for comparing historical bathymetric surveys. Our methodology uses Monte Carlo modelling to account for the random error components inherited in the data due to positioning and depth measurement uncertainties

    Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Deflagration to Detonation Density

    Full text link
    We explore the effects of the deflagration to detonation transition (DDT) density on the production of Ni-56 in thermonuclear supernova explosions (type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear supernovae with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of Ni-56 masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of Ni-56 and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range 1-3x10^7 g/cc. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 +/- 0.004 solar masses for a 1 solar metallicity increase evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 +/- 0.004 solar mass decrease in the Ni-56 yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.Comment: 15 pages, 13 figures, accepted to ApJ on July 6, 201
    • …
    corecore